skip to main content


Search for: All records

Creators/Authors contains: "Flenner, Elijah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Low-frequency vibrational harmonic modes of glasses are frequently used to rationalize their universal low-temperature properties. One well studied feature is the excess low-frequency density of states over the Debye model prediction. Here, we examine the system size dependence of the density of states for two-dimensional glasses. For systems of fewer than 100 particles, the density of states scales with the system size as if all the modes were plane-wave-like. However, for systems greater than 100 particles, we find a different system-size scaling of the cumulative density of states below the first transverse sound mode frequency, which can be derived from the assumption that these modes are quasi-localized. Moreover, for systems greater than 100 particles, we find that the cumulative density of states scales with the frequency as a power law with the exponent that leads to the exponent β = 3.5 for the density of states. For systems whose sizes were investigated, we do not see a size-dependence of exponent β. 
    more » « less
  2. Sound attenuation in low-temperature amorphous solids originates from their disordered structure. However, its detailed mechanism is still being debated. Here, we analyze sound attenuation starting directly from the microscopic equations of motion. We derive an exact expression for the zero-temperature sound damping coefficient. We verify that the sound damping coefficients calculated from our expression agree very well with results from independent simulations of sound attenuation. Small wavevector analysis of our expression shows that sound attenuation is primarily determined by the non-affine displacements’ contribution to the sound wave propagation coefficient coming from the frequency shell of the sound wave. Our expression involves only quantities that pertain to solids’ static configurations. It can be used to evaluate the low-temperature sound damping coefficients without directly simulating sound attenuation. 
    more » « less
  3. null (Ed.)
    The temperature dependence of the thermal conductivity of amorphous solids is markedly different from that of their crystalline counterparts, but exhibits universal behaviour. Sound attenuation is believed to be related to this universal behaviour. Recent computer simulations demonstrated that in the harmonic approximation sound attenuation Γ obeys quartic, Rayleigh scattering scaling for small wavevectors k and quadratic scaling for wavevectors above the Ioffe–Regel limit. However, simulations and experiments do not provide a clear picture of what to expect at finite temperatures where anharmonic effects become relevant. Here we study sound attenuation at finite temperatures for model glasses of various stability, from unstable glasses that exhibit rapid aging to glasses whose stability is equal to those created in laboratory experiments. We find several scaling laws depending on the temperature and stability of the glass. First, we find the large wavevector quadratic scaling to be unchanged at all temperatures. Second, we find that at small wavevectors Γ ∼ k 1.5 for an aging glass, but Γ ∼ k 2 when the glass does not age on the timescale of the calculation. For our most stable glass, we find that Γ ∼ k 2 at small wavevectors, then a crossover to Rayleigh scattering scaling Γ ∼ k 4 , followed by another crossover to the quadratic scaling at large wavevectors. Our computational observation of this quadratic behavior reconciles simulation, theory and experiment, and will advance the understanding of the temperature dependence of thermal conductivity of glasses. 
    more » « less
  4. The temperature dependence of the thermal conductivity is linked to the nature of the energy transport at a frequency ω , which is quantified by thermal diffusivity d ( ω ). Here we study d ( ω ) for a poorly annealed glass and a highly stable glass prepared using the swap Monte Carlo algorithm. To calculate d ( ω ), we excite wave packets and find that the energy moves diffusively for high frequencies up to a maximum frequency, beyond which the energy stays localized. At intermediate frequencies, we find a linear increase of the square of the width of the wave packet with time, which allows for a robust calculation of d ( ω ), but the wave packet is no longer well described by a Gaussian as for high frequencies. In this intermediate regime, there is a transition from a nearly frequency independent thermal diffusivity at high frequencies to d ( ω ) ∼ ω −4 at low frequencies. For low frequencies the sound waves are responsible for energy transport and the energy moves ballistically. The low frequency behavior can be predicted using sound attenuation coefficients. 
    more » « less
  5. Translational dynamics of 2D glass-forming fluids is strongly influenced by soft, long-wavelength fluctuations first recognized by D. Mermin and H. Wagner. As a result of these fluctuations, characteristic features of glassy dynamics, such as plateaus in the mean-squared displacement and the self-intermediate scattering function, are absent in two dimensions. In contrast, Mermin–Wagner fluctuations do not influence orientational relaxation, and well-developed plateaus are observed in orientational correlation functions. It has been suggested that, by monitoring translational motion of particles relative to that of their neighbors, one can recover characteristic features of glassy dynamics and thus disentangle the Mermin–Wagner fluctuations from the 2D glass transition. Here we use molecular dynamics simulations to study viscoelastic relaxation in two and three dimensions. We find different behavior of the dynamic modulus below the onset of slow dynamics (determined by the orientational or cage-relative correlation functions) in two and three dimensions. The dynamic modulus for 2D supercooled fluids is more stretched than for 3D supercooled fluids and does not exhibit a plateau, which implies the absence of glassy viscoelastic relaxation. At lower temperatures, the 2D dynamic modulus starts exhibiting an intermediate time plateau and decays similarly to the 2D dynamic modulus. The differences in the glassy behavior of 2D and 3D glass-forming fluids parallel differences in the ordering scenarios in two and three dimensions.

     
    more » « less